Domain architecture of protein-disulfide isomerase facilitates its dual role as an oxidase and an isomerase in Ero1p-mediated disulfide formation.

نویسندگان

  • Mohini S Kulp
  • Eva-Maria Frickel
  • Lars Ellgaard
  • Jonathan S Weissman
چکیده

Native disulfide bond formation in eukaryotes is dependent on protein-disulfide isomerase (PDI) and its homologs, which contain varying combinations of catalytically active and inactive thioredoxin domains. However, the specific contribution of PDI to the formation of new disulfides versus reduction/rearrangement of non-native disulfides is poorly understood. We analyzed the role of individual PDI domains in disulfide bond formation in a reaction driven by their natural oxidant, Ero1p. We found that Ero1p oxidizes the isolated PDI catalytic thioredoxin domains, A and A' at the same rate. In contrast, we found that in the context of full-length PDI, there is an asymmetry in the rate of oxidation of the two active sites. This asymmetry is the result of a dual effect: an enhanced rate of oxidation of the second catalytic (A') domain and the substrate-mediated inhibition of oxidation of the first catalytic (A) domain. The specific order of thioredoxin domains in PDI is important in establishing the asymmetry in the rate of oxidation of the two active sites thus allowing A and A', two thioredoxin domains that are similar in sequence and structure, to serve opposing functional roles as a disulfide isomerase and disulfide oxidase, respectively. These findings reveal how native disulfide folding is accomplished in the endoplasmic reticulum and provide a context for understanding the proliferation of PDI homologs with combinatorial arrangements of thioredoxin domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum.

Native protein disulfide bond formation in the endoplasmic reticulum (ER) requires protein disulfide isomerase (PDI) and Ero1p. Here we show that oxidizing equivalents flow from Ero1p to substrate proteins via PDI. PDI is predominantly oxidized in wild-type cells but is reduced in an ero1-1 mutant. Direct dithiol-disulfide exchange between PDI and Ero1p is indicated by the capture of PDI-Ero1p ...

متن کامل

Structure of Ero1p, Source of Disulfide Bonds for Oxidative Protein Folding in the Cell

The flavoenzyme Ero1p produces disulfide bonds for oxidative protein folding in the endoplasmic reticulum. Disulfides generated de novo within Ero1p are transferred to protein disulfide isomerase and then to substrate proteins by dithiol-disulfide exchange reactions. Despite this key role of Ero1p, little is known about the mechanism by which this enzyme catalyzes thiol oxidation. Here, we pres...

متن کامل

Two pairs of conserved cysteines are required for the oxidative activity of Ero1p in protein disulfide bond formation in the endoplasmic reticulum.

In the major pathway for protein disulfide-bond formation in the endoplasmic reticulum (ER), oxidizing equivalents flow from the conserved ER-membrane protein Ero1p to secretory proteins via protein disulfide isomerase (PDI). Herein, a mutational analysis of the yeast ERO1 gene identifies two pairs of conserved cysteines likely to form redox-active disulfide bonds in Ero1p. Cys100, Cys105, Cys3...

متن کامل

Therapeutic implications of protein disulfide isomerase inhibition in thrombotic disease.

The study of thrombus formation has increasingly applied in vivo tools such as genetically modified mice and intravital microscopy to the evaluation of molecular and cellular mechanisms of thrombosis. Among several unexpected findings of this approach was the discovery that protein disulfide isomerase serves an essential role in thrombus formation at sites of vascular injury. The observation th...

متن کامل

Identification of small molecular inhibitors for Ero1p by structure-based virtual screening.

Ero1p, using molecular oxygen as its preferred terminal electron acceptor, promotes disulfide bond formation by interaction with protein disulfide isomerase. Dysfunction of Ero1p leads to strong activation of the unfolded protein response and marked loss of cell viability. However, modest attenuation of Ero1p improves the fitness of yeast challenged with high levels of protein misfolding in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 2  شماره 

صفحات  -

تاریخ انتشار 2006